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Abstract. The so-called ‘Brussels’ approach to the derivation of kinetic equations usually
proceeds by representing the Liouville operator L in the form Ly + AL; where A is a
perturbation parameter. It can be formulated in terms of an operator P {(or a set of
such operators) commuting with Lo and projecting from a Hilbert space H, spanned
by all square-integrable phase-space densities or density matrices p, into a subspace
H, in which the reduced or kinetic description is to apply. For the case where H;
is finite-dimensional, we prove here two main results. (i) If the time-domain collision
operator, defined by

W) = PL1Qexp(QLQYQL, P

where @ = 1 — P, is bounded above in norm by a decreasing exponential function of
[t| and satisfies the condition that the Hermitian part of [ el¥*4(t) dt be invertible
for all real y, then for sufficiently small positive A the long-time asymptotic approach
to equilibrium in the subspace H; is an exponential decay or exponentially decaying
oscillation and is correctly given by the Brussels perturbation method. (ii) If the norm of
the collision operator decays to zero as ¢ — oo more slowly than any exponential then,
regardless of the value of A, the asymptotic behaviour does not have the exponential
form predicied by ihe Brusseis method.

1. Introduction

A central problem of non-cquilibrium statistical mechanics is the derivation of kinetic
equations: that is, an equation or set of equations giving the time evolution of some
reduced description of the system. Most rigorous derivations of kinetic equations are
valid only in the limiting case where some coupling parameter representing a strength
of interaction becomes vanishingly small. A case in point is Lanford’s derivation of
Boltzmann’s equation for a hard-sphere system [1], in which the small parameter is
the diameter of one of the hard spheres.

In the Jate 1960s and early 1970s a group working in Brussels, notably Prigogine
et al [2], pioneered an approach whose aim was to derive kinetic equations which
were exact not just in a limiting case but over some finite range of values of the
relevant coupling parameter. This approach has attracted the attention of a number
of authors [3] and has been applied in fields outside statistical mechanics, including
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the theory of dynamical systems [4] and the theory of decaying states in quantum
mechanics [5]. The version of the method which we shall study here is based on
the Nakajima-Zwanzig equation [6), an equation whose structure is similar to that
of the desired kinetic equation, but differs from it in being non-autonomous: the
equation contains a memory term so that the time rate of change of the reduced
description depends on the reduced description at earlier times as well as at the time
in question The idea is to show that the long- -time asymptotic behaviour of solutions
of the Nakajima—Zwanzig equation is governed by an autonomous equation, without
memory terms. This autonomous equation (equation (78)) in the present paper) is
then the exact kinetic equation sought by the Brussels group.

A further strand in this thinking is the idea of subdynamics. The method gives
a recipe for passing from any time-dependent ensemble density (by which we mean
a phase-space density or, in the quantum case, a density matrix) p,, for which the
reduced description satisfies the kinetic equations only approximately, to a new én-
semble density IIp, (really a measure rather than a density since it is not obviously
non-negative) which, like p,, satisfies Liouville’s equation and for which the corre-
sponding reduced description exactly satisfies the kinetic equation (78). The new
measure [Ip, is sometimes called the ‘kinetic part’ of p, and the set of all possible
Mp,, a subspace of the linear space of all measures on phase space, is called the
kinetic subspace. The kinetic subspace is invariant under the action of the Liouville
operator, and the dynamical evolution that takes place in it is therefore described
as ‘subdynamics’. In many situations, such as the important cases of thermodynamic
equilibrium and of non-equilibrium stationary states, it has been claimed [2] that the
entire behaviour of the system lies within the kinetic subspace.

The Brussels theory relies heavily on two mathematical techniques. One is a
perturbation method in which the Liouville operator [, is regarded as being obtained
by perturbing a simpler operator L, for which the reduced description would be a
complete representation of the time evolution, and everything is expanded in powers
of a parameter measuring the size of this perturbation. The other is the use of analytic
continuation in the complex frequency plane to approximate the long-time behaviour
in terms of poles of the analytically continued resolvent of a related operator Q LQ.
These poles lead to exponentially decaying terms in the asymptotic time evolution.
However, the manipuiations used are usually formal rather than rigorous so that the
reader may be left wondering, at best, whether the expansions used are sufficiently
uniform in the time variable to tell us anything useful about the long-time behaviour,
and at worst whether they mean anything whatever.

The purpose of this paper is to look at a small part of the Brussels formalism
from a mathematically rigorous point of view. We shall find that there are some
conditions under which at least a part of the formalism rests on solid foundations;
but on the other hand it is quite possible that these conditions cannot be satisficd for
any realistic system. Indeed, a consequence of these conditions is that the long-time
behaviour be an exponential decay; yet the widespread occurrence of ‘long-time tails’
in correlation functions [7], which decay with time more slowly than any exponential,
indicates that there are many systems for which these conditions are not satisfied.
It coome likelv that curh custeme will not thva the conditions of Va]ldll’\’ for the

LAAILS LAWY M OO VYaA vy SGaaliy sy SRARSRSARSSIS R eSS

Brussels method. For example, Dorfman and Cohen [8] have shown in the case
of the density expansion for transport coefficients in imperfect gases that the terms
giving rise to the long-time tails arc the same ones as responsible for the divergence
of the perturbation expansions.
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2. Deriving the master equation

The fundamental object in the theory is the classical phase space density or quantum
density matrix at time ¢, denoted p,. We assume p, to be square-integrable over
phase space, so that it can be treated as an element in a Hilbert space H, with
inner product {p, o) = [ podx - -dq, for classical mechanics, w(p' o) for quantum
mechanics. The Hilbert-space elements p, for different times ¢ are rclated by

pe=U(t)p, (L

where the operators U(t), acting in M, are urnitary and form a group with the
multiplication faw U(t)U/(s) = U(t + s). The generator L of this group, defined by

F 2N . naa f TN £
UL} = eXpi i) \&)

is an anti-Hermitian operator in the space H. From (1) and (2) it follows that

L= Lo, G
and so we can identify L as the Liouville operator.

Next one introduces a projection operator P, which projects from the full mi-
croscopic description associated with p, to the reduced description where the kinetic
equations are to apply. (In some applications of the Brussels method, e.g. [4] and [9],
a family of such operators is used; for these applications, our P can be any member
of this family, or a sum of such members.) An ¢quation for the time evolution of
Pp, can be obtained by pre-multiplying both sides of (3) in turn by P and by the
complementary projection operator ¢ defined by

Q=I-P 0

1 being the unit operator. This gives a pair of differential equations

d

3;Pp0 = PLp, = PLPp, + PLQp, (5)

d

9P = QLp=QLPp, + QLQp,. (6)
Solving for Qp, in (6) gives

Qp. = exp(1QL)Qpo + [ ds expl(t- $)QLIQLPp,. ™

Insertion of this expression into (5) leads to the Nakajima-Zwanzig [6] equation
which, since it holds for any p,, can be written (using (1)) as an operator equation
for U(t)

d

5 PU() = PLPU(1) + PLQF(1)Q +L ds PLQF(t — s)QLPU(s) ®)
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where we have defined

F(l) =exp(tQLQ). el
Equation (8) is subject to the initial condition

U(0)=1. (10)

In the perturbation method used by the Brussels group, the Liouville operator has
the form

L=Ly+ AL, (1)

where L, and L, are both anti-Hermitian and X is a smal

here to be real so as to make L anti-Hermitian. The perturbing term AL, can be
thought of as representing, for example, the effect of collisions. It is also assumed
that

I maramator whirh wa tals
1 parameier, K

PLy=LyP (12)

so that if the system starts in the P = 1 subspace, then the unperturbed (A = 0)
time evolution does not take the system outside that subspace. It is usual to assume
further that PL, = L, F = 0 so that the time variation of the reduced description
is due entirely to the small term AL,; however, we shall not nced this assumption
here.

The kinetic equation is an evolution equation for the reduced phase-space density
FPp,. To calculate the time evolution of Pp, exactly with given initial conditions it
is, by (1), necessary (and, if Qp, = 0, sufficient) to know the operator

V(t) = PU(t)P. (1%
An integro-difierential equation for V(¢) can be obtained by post-multiplying equa-
tion (8) by P and using the fact, which follows from (11), (4) and (12), that

PLQ = MPL,Q and QLP = XQL,P. The resulting equation, known in this
context as the master equation, is

iV(t) = PLPV(1)+ Az—/t ds¥(t—s)V(s) (14
dt 0

with the initial condition

V(0)= P (1%
and 1 (the so-called ‘collision operator’) defined by

w(t) = PLQF()QL,P. (16)

Note that 1 depends on X as well as on ¢; however our main results do not require
any assumption as to the nature of this dependence.
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To solve eguation (14), define the Laplace transform of ¢ as

B = [ e a7)
and V(p) similarly. Taking the Laplace transform on both sides of (14) we obtain

PV(p)= P = PLPV(p) + X d(p)V(p) (18)
from which

V(p) = Plp— PLP - X*4(p)]™". (19)

On taking the inverse Laplace transform we find

V(1) = —/c+m Plz— PLP - A23(2) e ds (¢t >0) (20)

with ¢ a real number chosen sufficiently large to ensure that the contour lies to the
right of all singularities of the integrand in the complex z-plane.

To find the asymptotic behaviour of V'(t), one wishes to pick out those singu-
larities within the integrand of equation (20) that provide the slowest decay when ¢
is large. In this endeavour, the analytic properties of (z) are evidently of central
CORCern.

3. Exponential time decay

In general, V(1) is an operator. In this section and the next two, however, we restrict
ourselves to the special case where the P = 1 eigenspace of P (which we shall call
H,) is one-dimensional, so that 4(¢) and V(t} may be treated as scalar quantities.
We shall also make the further simplification of assuming that

PLP =0. 21)

Equation (21) holds, for example, in the important case where p, is a density matrix,
Pp, is the diagonal part of this matrix and L Pp, is obtained by taking the commu-
tator of Pp, with the Hamiltonian operator. Later, in section 6, we shall generalize
to the case when %, is n{limensional and where PLP # 0.

Tha fnlla tha ah i~k tha rontral rﬂcn'[r nf thic nrauce that F
1 LUIIUWLHB Lil\rUl\ylll, Wlll\,u .‘D MW WALILIAY LWIWiLE WL BT l.lutl\-l, Pluv\fﬂ Lllﬂ‘. ll

|#(¢)] is bounded by a decaying exponential then the dominant long-time behaviour
of V(1) agrees with the results of the Brusseis group.

Theorem 1. Let (1) be a complex-valued function of ¢t (0 € t < oc) which is
locally integrable and satisfies

[10(t)] € K exp(—at) allt>0 (22)
where A, o are positive constants, Let A be a real number satisfying

M <allAK. (23)
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Then:
(i) The equation

z = A(2) 24)

with v defined as in (17), has a unique solution in the half-plane Re 2 > — 1o where
Re indicates ‘real part of’. We denote this solution by p,.

(iiy The one-dimensional version of equation (14) with PLP = 0 has a solution in
the form

V(1) = W(t) + W(2) all ¢t >0 (25)
with

W(1) = Aexp(p,t)  allt>0 (26)
and

|W ()] < K, exp(—1at) allt >0 @27)

where K, is a positive constant and A is defined by
1
1—AZ¢'(py)

the prime denoting a derivative. For large t the asymptotic form of V' (¢) is therefore

(28)

V(t) ~ Aexp(p,t) (t — c0) 29
with

- %a < Re p;. (30)
(i) The real part of p, is non-positive, so that V{t) is bounded for large ¢. If

Re ¥(z) # 0 whenever Re z =0 (31)

then the real part of p, is negative, so that |V (1)| decays exponentially to zero as
1 — oo.

Proof. (i) Since |v»(t)| has an upper bound proportional to exp(-at), its Laplace
transform (z) is, by (17), analytic in the open half-plane Re z > —a. Thus, by
(19) and (21), the only singularities of V(z) in this open half-plane are the zeros of

2 — A249)(z). We apply Rouché’s theorem to the function z — A24(z) taken around a
1

contour consisting of a large semicircle in the half-plane Re z 2 —5« with the mid-

wwrimt AF atn ctveasaht cida nr tha naint - — 7lr\4 ﬂn rh-c contour wa haup |s| - 1,
PUilii Ui 5 dlidigiit Jiul ai uiv pulin £ — Tl CONMOUl W nav =z &

but, by (17), (22) and (23)

oo
N(2)| € )\2/ e*?Ke ' dt = 20 K/a < }a. (32)
1]
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So, by Rouché’s theorem, the function z — A2¢(z) has precisely one zero inside the
hali-plane, and this zero is the number p, defined in (24).

(ii) Deforming the contour in equation (20) and using (21) we got

—af2+4ico zt zt
V(1) = AL G I PEN (33)
2T S _ajrmice z— A2%(2) 271 z — AZ4p(z)

the second integral being taken around a small closed contour surrounding the pole
at p,. The change in the path of integration at infinity is justified because of the
lemma (theorem 13 in chapter I of [10]) that if the integral f(z) = [~ e~ *'du(t)
has an abscissa of convergence x, then f(z +iy) = o(Jy|) as |y| — co, uniformiy
in z_ 4+ 6 €z < oo for any positive §; one need only take p(t) = fot P{s)ds toO
see that the integrand in (20) has an upper bound of the form constant/(Im z) for
large values of Im z, the imaginary part of =z,

Defining the second integral in (33) to be W(t) we have, by Cauchy’s theorem
of residues,

1 e”tdz ePi!
Wi(t) == — = = - 34
(t) znij{z-)\%b(z) - A%'(p,) .

provided that 1 ~ A2¢)’(p,) # 0. To check this last condition we note that, by (17),
(22) and (23)
<ANaKja’ <1 (35)

NI = 3| [ et
0

eny {26 and M2 ara nrovad
U (LU} alld (L0 ait pruvieu,

The other integral in (33) we define to be W (1), so that (25) holds automatically.
To estimate W(1)} we rewrite its definition as

VOTIEIN B (l + _._izi(i)—-) et dz. (36)

and
daiiu

2mi —a/2=ico z 2{z — ,\21—15(2))

Using the standard result

1 ma/2tioe g2ty
— =0 (t > D) 37
27l —af2~ic0 z ( )
and setting z = —1a + iy we obtain
. 1 f* Ay(z)ei¥id
Wi(t) = e—u!/?_”‘_f : P(z)e -y _ . (38)
271 Jo (—a/2 + 19)(—a/2 + iy — N3(2))

It follows, by (17) and (23), that (27) holds, with
K, = _1_f°° (222K /a)dy
YT L @+ e+ y?) = 20K o

(iii) To prove that Re p, < 0 when (31) holds we use the result proved in appendix 1,
which shows that equation (24) cannot be satisfied with Re z > 0. If in addition the
condition (31) is satisfied then equation (24) cannot even be satisfied when Re > =
0, so that in that case we must have Re p, < 0. This completes the prool of

thanram 1 D
MICUICITE o,

(39)
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The theorem shows that V(#) is the sum of two parts. One of them, W (),
decays at least as fast as e~ ¥ however small the value of ) is, but the other, W (1),
decays at a rate proportional to A%. The condition (23) ensures that X is small enough
for this fast term to dominate when ¢ is Jarge.

The implication of theorem 1 is that if the modulus of v is bounded above by
a decreasing exponential, then the separation (equation (25)) used by the Brussels
group holds in the P = 1 subspace H,. There are discrete-time dynamical systems
for which the function analogous to 1> can be shown to obey this sufficient condition,
but we know of no continuous-time system for which this can be done.

In the work of the Brussels group a condition similar to (31), namely

$(0) £ 0 (40)

has been called the dissipativity condition [11]. If this condition is not satisfied, that
is if ¥(0} = 0, then the relevant solution of equation (24) is p, = 0 and hence
equation (26) shows that V(¢) approaches a constant for large £, so that at least
part of the initial information contained in Pp; is remembered by the system for
all time. However, even with the condition (40) satisfied, 1»(0) might be imaginary,
in which case p, would be (to lowest order in ) imaginary, V'(t) would oscillate
sinusoidally for large ¢, and again some part of the initial information contained
in Pp, would be remembered by the system for all time. The name ‘dissipativity
condition’ might better be given to equation (31) which, as our theorem shows, does
guarantee dissipation, at least in the case considered here for which PLP = 0 and
dimH, = 1.

The Brussels group introduced an operator X(t) which is supposed to pick out
the asymptotic behaviour of the system at large times [2]. In their notation, W and
W would be written W(¢) = PX(¢)P and W = PX(t)P. However, we have no
rigorous information about the behaviour of (¢} beyond that given above concerning
its restriction to the P subspace, namely W{(t).

4. Series expansions

In this section we show how some series expansions used by the Brussels group
can be derived in a simple and rigorous way using complex variable methods. The
theorem given here provides sufficient conditions for such series expansions to be
valid. A principal requirement is that 1)(t) have the exponential decay property used
in theorem 1. If this requirement is not satisfied, the theorem in Section 5 makes it
likely that the series expansions are not valid.

Theorem 2. Under the conditions of theorem 1 the propagator W (1) defined in
equation (26) has the following convergent series expansion:

o0

Wty = S AW, () @1)

n=0
where, for all t, we define

W) =1
(42)

W, (1) = ﬁ—fmdfw dsy (1= 8y == 8,)"b(s1) - Bls,).
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The corresponding expansions for V(¢) and W (1) (¢ > 0) are
o A2n e 00
(1) = 1+27ﬂ—j day o [ dsy(t— s, = om s ) 0080 b(s,) @

Wn=-3 ,ﬂf doy oo [T dsy(tm sy =) M) ) (9

n=1

where, for any z, £, means = if z > 0 and 0 if z < 0, whilst z_ means z if
x < 0and 0if « > 0 (o that z® = & * 4 x_™ ). It should be noted that, despite
appearances, the expansions such as (41) are not power series expansions of the usual
type, since the coefficients of A?™ are themselves functions of A.

Proof. 'We consider formula (41) first. Let A satisfy the condmon (23) as in theorem
1 and let the contour in- equatlon {34) be a circle of radius —a centred at the origin.
The definition (17) of + and the condition (23) imply that [w(z)l 2K /a on the
contour; consequently we have

1 ezt
1 ot N 20 {9(2))”
= ﬁfdze tZ)\z { z(nz:l-)l}
_ »\2“ e LB}
= me s 45)

The third equality follows from the fact that the series inside the second integral is
dominated by the series

D IN2E /)™ (Gt = YN/ (0P [4K)) /(fa)

b3

which converges due to (23). Thus, using Cauchy’s formula for a derivative, we may
write W(t) in the form (41), convergent for A? < a?/4K, where by (17)

Wy(t) =1 (all t) (46)
W, (t) = % fdz =t {1'[)( i

-l,.

- a[(@) o],
e e

=— ; ds1 j; ds,(t—s8,— - =8 )"%(s)} - ¥(s,).

n!

Now we consider the series for V' (¢), equation (43). The multiple integral in the nth
term in the series for V(¢), call it V, (), is bounded above, when ¢ > 0, by
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/D d] dsp(t=s1— = 5) Plwls)] -+ w(sn)]
s]o dfo ds, 1 [9(s)] - 1(s,)]

=t“(Lmdsw4@0n. 7

Hence the series (43) for V (¢} is majorized by the series for exp (|M*t f° ds {y(s)]),
and therefore converges by virtue of the bound (22) on (i), umiformly on any
compact interval of the positive t-axis. Then it may be checked, using term-by-term
differentiation, that the series for V(£) satisfies the master equation (14) and its
boundary condition V' (0) = 1.

Finally, to prove the series (44) for W(t) we substitute (41) and (43) into (25).
This completes the proof of theorem 2. W]

The expansions in equations (41)-(44} are exactly the same as oncs used by the
Brussels group [2,9].

5. Non-exponential time evolution

In this section, we consider the case where the asymptotic time evolution decays
more slowly than any exponential function. The following theorem gives a sufficient
condition for such a decay situation.

Theorem 3. Let 1 be a locally integrable complex-valued function on [0, c0) which
decays to zero more slowly than any exponential, so that

lim ()= 10 (48)
t—00

whilst for any positive o, however small, we have
Y(t)e™ unbounded as ¢ — oo. (49)

Then the solution V(1) of the one-dimensional version of equation (14), provided
that its fourth derivative exists and is of bounded variation, is not bounded on the
positive {-axis by any decreasing exponential. This result holds even if PLP is
NON-ZEr0.

Proof. Suppose, to the contrary, that V() were bounded in absolute value by some
decreasing exponential of the form Cexp(—~t) with 4 > 0 and C a positive con-
stant. Then its Laplace transform V(p) would be analytic in the open half-plane
Re p > —< and hence, by (19), the function v(p) would be meromorphic for
Re p > —~v. Consequently, by deforming the contour in the inverse transform for-
mula giving +(#) in terms of 4(t), we would have
p=L [ ”A‘Z( PLP - o )dz+ :
= —— z - — —_—
w(t) 27 Sy, —ico © V(z) 27
x {sum of residues at poles of integrand in Re z > —v,} (50)
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where -+, is a positive number less than ~. This last step is justified by the lemma
referred to in the proof of theorem 1, this time applied with u(t} = V'"({) so that
after five partial integrations and use of the facts (deducible from equations (13) and
(2) restricted to ) that V(0) = 1 and V'(0} = PL P the lemma gives

(z+iy) V(e +iy) =1 (51)

PLP V"(0) V() 1
Tttt ernE Terwe e (ma)

uniformly in —v;, < ¢ < oo. From this version of the lemma it follows that the
integrand in (50) is wniformly small for large |y| so that the change in the path of
integration at infinity is justified, and also that 1/V(z+iy) ~ (z+iy)—PLP+o0(l)
for large |y| so that the poles mentioned in (50) are confined to some finite part of
the strip —y; < Re z £ 0 and are therefore finite in number.

By an argument similar to the one starting with equation (36) in the proof of
theorem 1, using the estimate (51), the first term on the right of (50) decays as
t — oo faster than any exponential e~72* wjth 0 < v, < =,, and the second is a sum
of terms of the form e+’ x(polynomial in ¢), where p; is the position of the relevant
pole. But such a form for (%) is incompatible with at least one of the conditions
(48), (49); so our original supposition must be false, and the theorem is proved. O

As a corollary, theorem 3 implies that if |1p(¢)| falls off more slowly than expo-
nentially and V' (t) is smooth enough then the sum of the convergent power series
(43) for V' (t) does not decay exponentially with increasing t. In this case there is no
guarantee that the integrals defining the series expansions (42) and (44) for W (t)
and W(1t) exist, and even if they do there is no guarantee that the cxpansions will
converge.

6. The case where M, is n-dimensional

In the foregoing work we madc the assumption that the subspace H, picked out by
the projection operator P was one-dimensional. Here we extend the analysis to deal
with the case where this subspace is n-dimensional (n being finite) and at the same
time drop the restriction PL P = 0 (equation (21)).

As before, the starting point is equation (14), but now £(t) and +(t) in equations
{16) and (9) are operators in H,. They can be represented (relative to some arbitrary
basis in H,) as n x n matrices. Then V(t) = PU(t)P in equation (13) is also
represented by an n x n matrix, and equation (14) can be interpreted as a matrix
equation subject to the boundary condition V(0) = I, where I_ is the unit n x n
matrix. Taking the Laplace transform of the matrix version of equation (14) we have,
using (11)

V(p) = {pl, - PLP — \¥(p)}™} (52)

and so the solution to the master equation (14) is now
1 c+ico e - 4
Vi(t) = 7/ dze’ {2zl — PLP — Nvy(z)} (53)

with c sufficiently large.
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We use the standard Hilbert-space operator norm in H,, which is given by
[|[¥]|* = (largest eigenvalue of 1T1)) (54)
so that
n= () < J||? < tr(bT ). 5)

Theorem 4. Let (1) be a function of ¢ € [0, c0) whose values are operators in H,
satisfying

[l (| < K exp(—at) alt>0 (56)
where K and o are positive constants, and let A be a real number satisfying
A< —L—az sin~! . 57
4K 2n
Define p,, py, ... to be the solutions of
det{zI, — PLP — X?y(z)} =0 (58)

that lic in the half-plane Rez > —ja, and suppose that the n eigenvalues of the

matrix PLP + A\%4(z) are distinct for all z in some neighbourhood of the point set
{Py,Py,..-}. Then
(i) the number of points in the set {p,,py, ...} (allowing for multiplicities) is r.
(ii) The matrix version of equation (14) has a solution in the form

V(1) = W{t)+ W(1) allt >0 (59)
with
IW(t)|} < K, exp(—iat) allt> 0 (60)
where K, is a positive constant and, if the points p,,...,p, are distinct,
n
W) = Zciep‘t|”i>(”£1 (61)
i=1
where |w;) is a non-zero n x 1 column vector satisfying the equation
{pil, = PLP = N4(p;)}Iw;) = 0 (62)
{ | 20 o steve mase 1 sy wovas unntnae ooticfineg
\U‘l D d HUH-ZEIU 1 A Fi TUW YOLLUL SdLidiYlLE
{(vil{pid, — PLP - /\215(?;')} =0 (63)
and c; is the number defined by
¢ = 1 (64)

YT (vl - A29(py) Yy
(iii) The real parts of the numbers {p,,...,p,} are non-positive. If the Hermitian

part of the operator v(z) is invertible for all purely imaginary values of = then the
real parts of {p,,...,p,} are negative.
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Proof. (i) We apply Rouché’s theorem to the function

f(z) = det{z], -~ PLP — X\*(2)}
= det{zl, — PLP}det{I, — (21, - PLP)"'A%{(z)} (65

taken round the semicircular contour defined in the proof of theorem 1. Since PLP
has only a finite number of eigenvalues, all of them purely imaginary, we can make
the semicircle big enough to ensure that the distance from a point on the contour to
an eigenvalue of PL P is always at least 1, and hence that

(21, -~ PLP)™'|| < (2a)™" (66)

for all z on the contour. We also have, as in the proof of theorem 1,

(=)l € 2K/ a I (67
and hence, by (66), (57) and (67)

[[(21, ~ PLP)"*A2(2)|| < sin~Y(x/2n). (68)

It follows that each one of the eigenvalues of {1, — (zf, — PLP)~1A%4(z)} lies
within a circle in the complex plane having centre 1 and radius sin~!(w/2n), so
that the eigenvalue cannot vanish and its argument is between —= /2n and n/2n ;
consequently det{I —(zI, — PLP)~1A24(z)} also cannot vanish and its argument
is between —m /2 and = /2. As z goes all the way around the contour the total change
in argdet{l, — (21, — PLP)~1A24)(z)} must therefore be zero and so, by (65),
f(z) and det{zI, — PL P} have the same number of zeros inside the contour. The
zeros of det{zI, — PL P}, being the eigenvalues of PLP, all lic inside the contour
and are n in number; so f(z) has n zeros inside the contour and by definition these
are the numbers p,,...,p,.
(ii) Deforming the contour in equation (53), we have

1 —o f24i00 .
V(t) = 5o e*'dz{zI, - PLP -~ X29(2)}" ' + W(2) (69)
1 - f2-ic0
where the matrix function W (t), which provides the asymptotic form of V(¢), is
given (since we are assuming p,,...,p, to be distinct) by

W(ty =3 [ residue at p; of e'{z1, - PLP = \9(2)}!| . (70)
i=1

The proof of formula (61), which follows from (70), is given in appendix 2. The

proof of formu]a (60) is closely analogous to that of the corresponding formula (27)
in thearem 1: there ic no need to reneat the details,

CALWAS L WL 1, LWL W LS LI B e 2% S=wiida

(iif) By the definition (58) of p;, there is a non-zero vector ¢ in K, with the
property

(‘P, {piIﬂ. - PLP - ’\212’(;0;')}‘10) = 0. (‘71)
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Taking the real part we find, since PL P is anti-Hermitian, that
() Rep; — A’ Re (v, 9(p;)¢) = 0 (72)

By the result in appendix 1, the expression {{,w)Rep — A? Re(".p,v,z'(p)go)} is
certainly positive if Re p is positive, and so Re p; cannot be positive. If in addition
the Hermitian part of v(p) is non-singular for all putely imaginary p then, since
a non-singular non-positive definite matrix must be negative definite, the Hermitian
part of (p} is negative definite for purely imaginary p. Consequently in this case
the expression

(w,) Rep — A2Re (0, ¥(p)¢)

must be paositive even when Re p = 0 and so, by (72), Re p; cannot even be zero.
This completes the proof of theorem 4. |

Even if the eigenvalues of PLP + A24(z) are not distinct, equation (61) still
holds provided that the matrices p,I, — PLP — A?0(p;) (i = 1,...,n) all have
rank n — 1. Some other cases ar¢ discussed briefly in appendix 2.

As in theorem 1 these results show that the asymptotic behaviour of V() at large
times is dominated by W(t) and is therefore a sum of decaying exponentials and

damped oscillations as given by (61).

Equation (61), in a slightly different form, was first given by Grecos et al {12].

Theorem 3 likewise generalizes to the case where H, is n-dimensional: if ||y(1)]|
decays to zero more slowly than any decreasing exponential, then [|V(t)|| is not
bounded on the positive real axis by any decreasing exponential. The proof is a dircct
analogue of the one given in section 5 for the n = 1 case.

7. Asymptotic evolution equations

In the Brussels formalism, W(#) is an important operator; as noted carlicr, authors
from this group write it as PX.(1) P since it is the projection into M, of an operator
X(t) which when applied to the initial phase-space density p, is supposed to give the

an onllad Qrinmasin? (lana tima ncumntntind nart Af thae ramnlate nhace cnace dencity
30-taniia KGCUHL pUnLig-liine asyIiipiuliv) parl UL wib Vilipiviv puasv arruuu LUVOSiLy O

The operator T is then used to construct the kinetic equation governing the approach
to equilibrium [2].

To compare our results with those of the Brussels group, we can derive an evo-
lution equation for W (¢) by differentiating equation (61) with respect to ¢, using
equations (62), (17) and finally (61) again. This procedure gives, assuming for sim-
nhr‘ltv that PLP =0 (P uation (21\\

.....

,wu) = Zp,e*’-‘lu ]

=1

= Z)‘zifj’(?;)ep"lcs|us>(vi|

_Z)\g/ eP U™ (s) ds el )y

= ,\zf Ww(s)YW(t - s)ds. (73)
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This result should be compared with the master equation (14) for the full evolution
operator V(). Equation (73) coincides exactly with equation (74) of {9}, which was
obtained by the methods of the Brussels group.

Another operator from the Brussels formalism whose existence we may establish
from the foregoing discussion is the so-called ‘kinetic operator’ [2,9]. This operator,
which the Brussels group denote by PI' P, is defined by the requirement that it satisfy
(in the case PLP = ()

oo
PTP= A’f dsp(s)e PP, (74
Q
From this definition it follows by differentiation that
% [e*PPPW(0)] = PT Pe!PTPW(0) = )\2f dsy(s)e(t=IPTP Iy (0). (75)
0

same evolution equation and are the same at ¢ = 0. Hence

W(t) = e'F TP W (0). (76)
From this it follows that
%ﬁ = PTPW(¢). !

If p, is chosen to lie in H, then W(t)p,, which according to (13) and (29) is the
asymptotic form of Pp(t), will satisfy the equation

S W(t)e = PLPW(1)p, (78)

which is the autonomous kinetic equation sought by the Brussels school, restricted to
the subspace H,.

It can be verified, using first equation (62) (with PL P = 0) and then (17), that
a matrix satisfying equation (74) is

PLP =3 pilu)u]| (79)
i=1
where {u}| denotes the element associated to |u;) (as defined in {62)) in the corre-
sponding dual basis, the set of row vectors satisfying

(UEIU;‘) = 6:‘]" (80)

Such a dual basis always exists, and is unique, provided the column vectors |u;) are
linearly independent. A sufficient condition for these vectors to be linearly indepen-
dent at small A (remembering that PL P = 0 here), is that the matrix (0) depend
continuously on A and have distinct eigenvalues when A = 0; for then equation (62)
with PL P = 0 shows that in the limit A - 0 the vectors |u;) approach the eigen-
vectors of 1(0), and the latter are linearly independent if the eigenvalues of (0)
are distinct {13]. The linear independence of the vectors |u;) when X is sufficiently
small then follows by continuity.
Equation (79) was first given in [12],
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8. Discussion

In this paper, we have made a mathematically rigorous study of some aspects of the
long-time evolution governed by Liouville’s equation. Our results establish that, if the
norm of the collision operator (¢} in the master equation is bounded above by a
decreasing exponential, and if the dimension of the P = 1 subspace is finite, then the
Brussels formalism does indeed pick out the most slowly varying part W(t) of the
complete solution; moreover, the series expansion for this component converges for
sufficiently small values of the perturbation parameter A. However, if these conditions
on (t) are not met, the Brussels method is unlikely to work.

Some members of the Brussels group have attached much significance to exponen-
tial time decay in their writings, particularly in the context of the decays of unstable
particles in quantum mechanics [14}, although more recently it has been stated [4]
that .Gﬁg-uime tails \uuu-m\puncnum uqu'iji) ¢an be obtained from the formalisin,
Our work shows that exponential decay both of the collision operator and also in
the approach to equilibrium are indeed characteristic features of situations where
the Brussels formalism works but not necessarily of the behaviour of real physical
systems. If it is indeed, as stated by Petrosky and Hasegawa [4], that long-time tails

can be obtained from the Brussels formalism, a minimum requirement appears to to
be that ’H be infinite-dimensional

andan LELTRN S U F R ARAR VLI SV R LG E i) iR L Te Y 3

Although we have followed the standard convention of the Brussels group in
taking p, to be the phase space density (or density matrix), there is a lot to be said
for taking it instead to be the difference between the total phase-space density and the
equilibrium phase-space density. In that case X would denote not the entire Hilbert
space spanned by the square-integrable phase-space densities, but the subspace of
that Hilbert space consisting of square-integrable functions that are orthogonal to
the equilibrium phase-space density or densitics. The resulting theorems hold just
as before, and the prospects for satisfying the conditions for the theory to apply are
considerably brighter.

It would be desirable to try to find model systems which would satisfy the require-
ment on ||1(t)|| of exponential decrease. From the definition of (1), it is clear that
this property is related to the ergodic propertics of QLQ. One may anticipate that
mixing will be a minimum requirement; in fact, it has previously been conjectured
(but not proved) that the dynamical system should be an Anosov flow [15].

For systems of particles with attractive interactions, it seems unlikely that the
Anosov property will hold. Indeed, by the KaM theorem, we know that for weak
attractive interactions the invariant subspaces of the Liouville operator depend in a
very complicated and non-analytic way on the strength of the interaction. In such
cases, it seems very unlikely that one can describe the long-time behaviour by means
of an expansion in powers of a perturbation parameter and if so then the Brussels
method would not be applicable.
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Appendix 1. Proof that the Hermitian part of 1(z) is non-positive definite when Re z
is non-negative,

We prove that, regardless of the dimension of %, providing only that is is infinite,
the Hermitian part of 4(z) is non-positive definite for any complex z with positive
real part, and that it is also non-positive definite when z is purely imaginary if
{1¥(2)|i satisfies the upper bound condition (56). This is equivalent to showing that
Re(w,¥(z)w) < 0 for all ¢ € H, and all 2 with Re z > 0. Using the definition
(17) of the Laplace transform, the definition of v(t) (equations (16) and (9)), and
the fact that L is anti-Hermitian, this matrix element can be written

(s (2)e) = (. PL, Q / dte~(==QLAMQL, Py)

= —(QL Pp,(z - QLQ)'QL,Pyp)

o 1
= “/_00 m(QLlp%dE(n)QL1PCP)

= - [ (@rPeaEmaL P (1) 1)

where E(n) is the spectral resclution of the identity for the (Hermitian) operator
—iQ LQ) (so that the eigenvalues of QLQ are in with n real), and z,y are, respec-
tivly, the real and imaginary parts of z. Thus we have

~Re(e B200) = [ (@QLPoEMQLPY) (sl ). @)

For = > 0 the right-hand side is non-negative because d E(n) is a projection; there-
fore Re(w,v(z)) is non-positive. If ||+(1)|| satisfies the upper bound condition
(56), then {, 1)(z)), being analytic in z for = > —%a is continuous at * = 0 and

therefore Re(tp,lZ)(z)cp) is non-positive for « = 0. QED.
In the limit = — iy, the right-hand side of (82) becomes, formally

o d
f_ (QL1P(PadE(7?)QL1P<P)7T5(TI)=WE[(QLlF"P,E(ﬂ)QLlptP)]q:y- (83)

Hence Re(p, ¥(iy)w) is negative unless (d/dn)[(QL, Pe, E(n)QL,Pe)],-, =
0. In particular, if the spectrum of Q LQ is continuous near n = y, then there will
in general be some  for which Re (¢, ¥(iy)e) < 0.
Appendix 2. Proof of equation (61}.
Define

G(z) = PLP 4 X(z2). (84)

The definition (58) of p; is equivalent to the statement that p; is an eigenvalue of
G(p;). In accordance with our hypothesis that the eigenvalues of G(z) are distinct,
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there is a non-singular matrix M{(z), whose columns are the right eigenvectors of
G(z), such that the matrix D{z) defined by

D(z) = M(2)"'G(z)M(z) (85)

is diagonal and has all its diagonal elements different. Hence there is for each p; a
nonsingular matrix M(p;) such that

D(p;) = M(p;) ' G(p;) M(p;) (86)

is also diagonal, and hence the diagonal matrix

I.p; - D(p;) = M(p;)"',p; ~ G(p)] M (p,) (87)

has precisely one zero element on the diagonal. Let this be the kth diagonal element;
denote by |e.) the column matrix with a 1 in the kth diagonal position and zcros
everywhere else, and by {e,| the analogous row matrix.

To calculate the residues in equation (70), we need the inverse of the matrix

Iz~ D(z) = I,p; = D(p;) + (2 — p;)(I, = D'(p;)) + O((z ~ p,)?). 88)
1 alavmiants AFf thin smantuior nea A1 Y An o — P R I
P IGINGAILY UL LD SLdLL LA 4106 U\l} ady £ — pl. EKLCPL Ui AL,
which is (z — p;)(exl[f, — D'(p;)]ler) + O((z = p;)?). Off the diagonal all elements
are at most O(z — p;). Calculating the inverse matrix by means of cofactors, we find
that

Mn tha nal n?
WLl I.IIU ulﬁs\.’lldl, al

> -1 _ (z—p)! e
o= = D)™ = leg) rorp— e (exl + O(1) (89

provided that the denominator, which is the (k, k) element of (I, — D'(p,)), is
non-zero. This denominator can be written, using (86), as

d
1~ —(es| D(2)les)

z=p,
=1- %(ektM(z)‘lG(z)M(z)lek) by (86)
z=p;
= 1= A ey [M(2) " (2)M(2)ley)], ., by (84) ©0)

the terms arising from differentiation of M (z)~! and M(z) giving no contribution

T=Ppi

S IM(2) G M(2) )7 =) (2)

(=

z=p,
= (a| || Mea) ek> s
z=p;
+p‘-(ek‘M(z)‘1%M(z) ek>
z=p;
= pigled M) M(le)| =0, Q)
zzpi
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To find the residue required for the evaluation of (70) we multiply (89) on the left
by M{p;) and on the right by M(p;)~!, and then use (90) and (87), obtaining

Lz~G(2)]™' = M(p;)e (z-p,-):l ep| M(p;)~ "
= S = Ml oy 11, — bt Gole - M (P

+ 0O(1). 92)

Since M(p;)|e;), the kth column of the matrix M (p,), is proportional to the column
matrix |u;) defined in (62) and (e, |M(p;)~! is proportional to {v;| defined in (63),
the result (61) follows. O

The above calculation works in some cases where G(z) does not have distinct
eigenvalues, provided the numbers p; are all distinct and each p, is a non-degenerate
eigenvaiue of the corresponding G(p; ), so that aii the diagonai matrices I, p; — D{p;)
have but a single zero on the diagonal—i.e. they are of rank n — 1. The method
can be generalized to the case where some or all of these matrices have rank less
than n — 1, provided they can still be diagonalized; in this case the formula for the
residue involves the inverse of the diagonal submatrix of 7, — D’(p;) whose diagonal
elements are in the same places as the zero diagonal elements of I, p, — D(p,), but
the formula is not worth giving here.
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