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AbslracL The so-alled 'Brussels' approach to the derivation of kinetic equations usually 
proceeds by representing the ~ o w i l l e  operator L in the farm LO + ALI where X is a 
perturbation parameter. It a n  be formulated in terms of an operator P (or a set of 
such operators) "mut ing with Lo and projecting fmm a Hilben space H, spanned 
by all square-integrable phase-space densities or density matrices p ,  into a subspace 
'HI in which the reduced or kinetic description is to apply. For the ease where HI 
is finite-dimensional, we prove here WO main mults. (i) If the time-domain collision 
operator, defined by 

$ ( t )  = P L I Q ~ ~ P ( Q L Q ~ ) Q L I P  

where Q = 1 - P, U bounded above in norm by a decreasing exponential function of 
It1 and satisfies the mnditian that the Hermitian part of 1," e 'Y '$ ( t )  d f  be invertible 
for all real y, then for sufficiently small positive X the long-time asymptotic approach 
to equilibrium in the subspace H, U an exponential decay or exponentially deaying 
oscillation and is correctly given by the Bmssels perturbation method. (ii) If the norm of 
the milision operator decays to z m  as t -+ m more slowly than any exponential then, 
regardless of the value of A, the  asymptotic behaviour does not have the exponential 
iorm predicied 'by the Brusseis method. 

1. Introduction 

A central problem of non-equilibrium statistical mechania is the derivation of kinetic 
equations: that is, an equation or set of equations giving the time evolution of some 
reduced description of the system. Most rigorous derivations of kinetic equations are 
valid only in the limiting case where some coupling parameter representing a strength 
of interaction becomes mnishingly small. A case in p i n t  is Lanford's derivation of 
Boltzmann's equation for a hard-sphere system [l], in which the small parameter is 
the diameter of one of the hard spheres. 

In the late 1960s and early 1970s a group working in Brussels, notably Prigogine 
er a1 [2], pioneered an approach whose aim was to derive kinetic equations which 
were exact not just in a limiting case but over some finite range of Values of the 
relevant coupling parameter. This approach has attracted the attention of a number 
of authors [3] and has been applied in fields outside statistical mechanics, including 
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the theory of dynamical systems [4] and the theory of decaying states in quantum 
mechanics [SI. The version of the method which we shall study here is based on 
the Nakajima-Zwanzig equation [6], an equation whose structure is similar to that 
of the desired kinetic equation, but differs from it in being non-autonomous: the 
equation contains a memory term so that the time rate of change of the reduced 
description depends on the reduced description at earlier times as well as at the time 
in question. The idea is to show that the long-time asymptotic behaviour of solutions 

memory terms. This autonomous equation (equation (78)) in the present paper) is 
then the exact kinetic equation sought by the Brussels group. 

A further strand in this thinking is the idea of subdynamics. The method givcs 
a recipe for passing from any time-dependent ensemble density @y which we mean 
a phase-space density or, in the quantum case, a density matrix) p t ,  for which the 
reduced description satisfies the kinetic equations only approximately, to a new en- 
semble density U p t  (really a measure rather than a density since it is not obviously 
non-negative) which, like pt. satisfies Liouville’s equation and for which the corre- 
sponding reduced description exactly satisfies the kinetic equation (78). The new 
measure rIpt is sometimes called the ‘kinetic part’ of pt and the set of all possible 
U p t .  a subspace of the linear space of all measures on phase space, is called the 
kinetic subspace. The kinetic subspace is invariant under the action of the Liouville 
operator, and the dynamical evolution :hat takes place h it is therefore described 
as ‘suhdynamics’. In many situations, such as the important cases of thermodynamic 
equilibrium and of non-equilibrium stationary states, it has been claimed [2] that the 
entire behaviour of the system lies within the kinetic subspace. 

The Brussels theory relies heavily on two mathematical techniques. One is a 
perturbation method in which the Liouville operator L is regarded as being obtained 
by perturbing a simpler operator Lo, for which the reduced description would be a 
complete representation of the time evolution, and everything is expanded in powers 
of a parameter measuring the size of this perturbation. The other is the use of analytic 
continuation in the complex frequency plane to approximate the long-time behaviour 
in terms of poles of the analytically continued resolvent of a related operator QLQ. 
These poles lead to exponentially decaying terms in the asymptotic time evolution. 
However, the manipuiations used are usuaiiy formai rather than rigorous so that the 
reader may be left wondering, at best, whether the expansions used are sulficiently 
uniform in the time variable to tell us anything useful about the long-time behaviour, 
and at worst whether they mean anything whatever. 

The purpose of this paper is to look at a small part of the Brussels formalism 
from a mathematically rigorous point of view. We shall find that there are some 
conditions under which at least a part of the formalism rests on solid foundations; 
but on the other hand it is quite possible that these conditions cannot be satisfied for 
any realistic system. Indeed, a consequence of these conditions is that the longtime 
behaviour be an exponential decay; yet the widespread occurrence of ‘long-time tails’ 
in correlation functions [7], which decay with time more slowly than any exponential, 
indicates that there are many systems for which these conditions are not satisfied. 
I! seems 5ke$ th.2: sxh spems wi!! nnt sztisfy the mndirions of va!idity for the 
Brussels method. For example, Dorfman and Cohen [SI have shown in the case 
of the density expansion for transport coeliicients in imperfect gases that the terms 
giving rise to the long-time tails are the same ones as responsible for the divergence 
of the perturbation expansions. 

P V Coventy and 0 Penrose 

of fie ~u’a~ajjima-Zwdnzig is governed ‘by an autonomous wii‘nout 
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2. Deriving the master equation 

The fundamental object in the theory is the classical phase space density or quantum 
density matrix at time t ,  denoted p,. We assume p, to be square-integrable over 
phase space, so that it can be treated as an element in a Hilbert space 'H, with 
inner product ( p ,  U )  = J pudz  . . .dqN for classical mechanics, t r (ptu)  for quantum 
mechanics. The Hilbert-space elements pi for different times t are related hy 

Pt = U ( t ! P ,  (1) 

where the operators U ( t ) ,  acting in 'X, are unitary and form a group with the 
multiplication law U ( t ) U ( s )  = U(t  f s). The generator L of this group, defined by 

(:i ,,,*\ ~ ...-, r A ,  
U\')  = exp\Lc) 

is an  anti-Hermitian operator in the space H. From (1) and (2) it follows that 

dp. = Lp, 
d t  (3) 

and so we can identify L as the Liouville operator. 
Next one introduces a projection operator P, which projects from the full mi- 

ROSWpiC description associated with pi to the reduced description where the kinetic 
equations are to apply. (In some applications of the Brussels method, e.g. [4] and [9]. 
a family of such operators is used; for these applications, our P can be any member 
of this family, or a sum of such members.) An equation for the time evolution of 
Pp,  can be obtained by pre-multiplying both sides of (3) in turn by P and by the 
complementary projection operator Q defined by 

Q = I - P  (4) 

I being the unit operator. This gives a pair of differential equations 

solving for Qpi in (6) gives 

i 

QPi = exp(tQL)Qp,  +i d s  expl(t  - s)QLIQLPp,.  (7) 

Insertion of this expression into (5) leads to the Nakajima-Zwanzig [6] equation 
which, since it holds for any pa, can be written (using (1)) as an operator equation 
for u ( t )  

d 
-PU(t )  = P L P U ( t )  + PLQF(1)Q + / ' d s  P L Q F ( t  - s ) Q L P U ( s )  
d t  0 

(8) 
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where we have defined 
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F(1)  = exp(1QLQ) .  (9) 

Equation (8) is subject to the initial condition 

U ( 0 )  = 1. (10) 

In the perturbation method used by the Brussels group, the Liouville operator has 
the form 

L = Lo + X L ,  (11) 

where Lo and 5, are k t h  acti=Eerfiitiea ea6 A k a ma!! paramete:, which we nke 
here to be real so as to make L anti-Hermitian. The perturbing term XL, can be 
thought of as representing, for example, the effect of collisions. It is also assumcd 
that 

PLO = LOP (12) 

so that if the system starts in the P = 1 subspace, then the unperturbed (A = 0) 
time evolution does not take the system outside that subspace. It is usual to assume 
further that PLO = L O P  = 0 so that the time variation of the reduced description 
is due entirely to the small term XL,; however, we shall not nccd this assumption 
here. 

The kinetic equation is an evolution equation for the reduced phase-space density 
Pp,. ’I~J calculate the time evolution of Pp, exactly with given initial conditions it 
is, by (l), necessary (and, if Qpo = 0,  sufficient) to know the operator 

V(1)  = PU(t)P. (13) 

An integro-differential equation for V ( t )  cm be obtained by post-multiplying equa- 
tion (8) by P and using the fact, which follows from (ll), (4) and (12), that 
P L Q  = XPL,Q and Q L P  = XQL,P. The resulting equation, known in this 
context as the master equation, is 

6’ d -V( t )  = PLPV(1) + X 2  
dt 

ds Q ( t -  s ) V ( s )  

with the initial condition 

V ( 0 )  = P (15) 

and Q (the so-called ‘collision operator’) defined by 

Note that Q depends on X as well as on 1;  however our main results do not require 
any assumption as to the nature of this dependence. 
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lb solve equation (14), define the Laplace transform of + as 
m 

& ( p )  = / c P ' ? ( t ) d t  (17) 
0 

and P(p) similarly. %king the Laplace transform on both sides of (14) we obtain 

P V P )  - p = PLPP(P)  + P1Z(P)P(P) 

P ( p )  = P[p - P L P  - X*&(p)]-'. 

(18) 

from which 

(19) 

On taking the inverse Laplace transform we find 

with c a real number chosen sufficiently large to ensure that the contour lies to the 
right of all singularities of the integrand in the complex z-plane. 

'RI find the asymptotic behaviour of V ( t ) ,  one wishes to pick out those singu- 
larities within the integrand of equation (20) that provide the slowest decay when t 
is large. In this endeavour, the analytic properties of q ( z )  are evidently of central 
concern. 

3. Exponential time decay 

In general, V ( t )  is an operator. In this section and the next two, however, we restrict 
ourselves to the special case where the P = 1 eigenspace of P (which we shall call 
H,) is one-dimensional, so that ?(t)  and V(1) may be treated as scalar quantities. 
We shall also make the further simplification of assuming that 

PLP = 0 .  (21) 

Equation (21) holds, for example, in the important case where p, is a density matrix, 
Pp, is the diagonal part of this matrix and L Pp, is obtained by taking the commu- 
tator of P p ,  with the Hamiltonian operator. Later, in section 6, we shall generalize 
to the case when XI  is n-dimensional and where P L P  # 0. 

1+(t)1 is bounded by a decaying exponential then the dominant long-time behaviour 
of V( t )  agrees with the results of the Brussels group. 

Theorem I. 
locally integrable and satisfies 

71- f-lln...:-n tLnnmm ..rh:ol. : E  +hn rontrol *or.i lt  nf rhir na-r nvnunc tkrrt :F 
I ,,b '""""'LLg ,,,U"lbll., Wl. ,L, ,  11 L.1.. -.1,.01 ..,..U11 "L L8l . l  py-., y."".,' LII'aL I t  

Let +(i) be a complex-valued function of 1 (0 < t < CO) which is 

I $ ( t ) [  < K e x p ( - a t )  all 1 > 0 (22) 

where Ii, a are positive constants. Let X be a real number satisfying 

X2 < a 2 / 4 h . .  (23) 
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Then: 
(i) The equation 
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2 = A'& z )  (24) 

with 4 defined as in (17), has a unique solution in the half-plane Re z > -+a where 
Re indicates 'real part of'. We denote this solution by p,. 
(ii) The onedimensional version of equation (14) with P L P  = 0 has a solution in 
the form 

~ ( t )  = ~ ( t )  + W ( t )  all t > o (25) 

with 

W ( t )  = Aexp(p,t) all t > 0 (26) 

and 

~ W ( t ) l  < IC,exp(-+t) all t > o (27) 

where ii-, is a positive constant and A is defined by 

the prime denoting a derivative. For large t the asymptotic form of V (  t )  is therefore 

V ( 1 )  - Aexp(p,t) ( t  -+ m) (29) 

with 

- < R e p , .  (30) 

(iii) The reai part of p, is non-positive, so that V-( t j is bounded for iarge t. i f  

Re G( z )  j& 0 whenever Re z = 0 (31) 

then the real part of p, is negative, so that IV(t)l decays exponentially to zero as 
1 - 0 3 ,  

proof. (i) Since l+(t)l has an upper bound proportional to exp(-at) ,  its Laplace 
transform q ( z )  is, by (17), analytic in the open half-plane Re z > -a. Thus, by 
(19) and (21). the only singularities of P(Z) in this open half-plane are the zeros of 
z - X2&r). We apply Rouche's theorem to the function z -  Xz&z)  taken around a 
contour consisting of a large semicircle in the half-plane Re z 2 -;a with the mid- 

but, by (17), (22) and (23) 
..&"* :+" "*...:"I.. &,lo "* .lrn ..,.:-, 
rJ,,,L V L  ,la "L,Q,S,,L 3,"- a, ,,,r Y",.,L i = ==+a os t!lii c=ntour we hr-e 1 - 1  1 - 1  ' 9 L-  2 -  

m 
X21&(z)l < X 2 1  ea"21ie-a'dt = 2 X 2 K / a  < io. (32) 
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So, by RouchC's theorem, the function z - XZ&(z) has precisely one zero inside the 
half-plane, and this zero is the number p ,  defined in (24). 

(ii) Deforming the contour in equation (20) and using (21) we get 

the second integral being taken around a small closed contour surrounding the pole 
at p,. The change in the path of integration at infinity is justified because of the 
lemma (theorem 13 in chapter I1 of [lo]) that if the integral f(r) = JF e-"dp(t) 
has an abscissa of convergence zc then f(z t i y )  = o(ly1) as JyI i 00, uniformly 
in zc t 6 < z < 00 for any positive 6; one need only take p ( t )  = +(s )ds  to 
see that the integrand in (20) has an upper bound of the form constant / ( Im z )  for 
large values of Im z ,  the imaginary part of z.  

Defining the second integral in (33) to be W (  t )  we have, by Cauchyls theorem 
of residues, 

provided that 1 - X2$(pl) + 0. 
(22) and (U) 

check this last condition we note that, by (17), 

.."A -- ,,G, .,"A I,P\ o-,, ..r-.,,.A a.," 0" \A", all" \&U, P l r  y1""c". 

1Ib estimate w(1) we rewrite its definition as 
The other integral in (33) we define to be w(t) ,  so that (25) holds automatically. 

Using the standard result 

and setting z = -30  + iy we obtain 

X z ~ ( z ) e i Y 1  d y  
. (38) W ( t )  = e-a'/z- 

2rri S" -m ( - a / 2  t iy ) ( -a /2  t i y -  X z $ ( r ) )  

It follows, by (17) and (23), that (27) holds, with 

(iii) 7b prove that Re  p, < 0 when (31) holds we use the result proved in appendix 1, 
which shows that equation (24) cannot be satisfied with Re z > 0. If in addition the 
condition (31) is satisfied then equation (24) cannot even be satisfied when Re z = 
0, so that in that case we must have Re p ,  < 0. This completes the proof of 
tI.*nmlr 1 
L I I V V I r . . . .  I. 
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The theorem shows that V(1)  is the sum of two parts. One of them, W ( t ) ,  
decays at least as fast as e-+-' however small the value of X is, but the other, W ( t ) ,  
decays at a rate proportional to A'. The condition (23) ensures that X is small enough 
for this last term to dominate when 1 is large. 

The implication of theorem 1 is that if the modulus of I,$ is bounded above by 
a decreasing exponential, then the separation (equation (25)) used by the Brussels 
group holds in the P = 1 subspace 'HI. There are discrete-time dynamical systems 
for which the function analogous to 11 can be shown to obey this sufficient condition, 
but we know of no continuous-time system for which. this can be done. 

In the work of the Brussels group a condition similar to (31), namely 

4 ( 0 )  it 0 (40) 
has been called the dissipativity condition [ll]. If this condition is not satisfied, that 
is if G(0) = 0, then the relevant solution of equation (24) is p 1  = 0 and hence 
equation (26) shows that V ( t )  approaches a constant for large 1, so that at least 
part of the initial information contained in Ppo is remembered by the system for 
all time. However, even with the condition (40) satisfied, q(0 )  might be imaginary, 
in which case p, would be (to lowest order in A) imaginary, V ( t )  would oscillate 
sinusoidally for large 1,  and again some part of the initial information contained 
in P p ,  would be remembered by the system for all time. The name 'dissipativity 
condition' might better be given to equation (31) which, as our theorem shows, does 
guarantee dissipation, a t  least in the case considered here for which P L P  = 0 and 
d i m x ,  = 1. 

The Brussels group introduced an operator C ( 1 )  which is supposed to pick out 
the asymptotic behaviour of the system at large times 121. In their notation, W and 
W would be written W(1) = P C ( t ) P  and W = P C ( t ) P .  However, we have no 
rigorous information about the behaviour of C ( 1 )  beyond that given above concerning 
its restriction to the P subspace, namely W(1). 

4. Series expansions 

In this section we show how some series expansions used by the Brussels group 
can be derived in a simple and rigorous way using complex variable methods. The 
theorem given here provides sufficient conditions for such series expansions to be 
valid. A principal requirement is that $ ( 1 )  have the exponential decay property used 
in theorem 1. If this requirement is not satisfied, the theorem in Section 5 makes it 
likely that the series expansions are not valid. 

Theorem 2. Under the conditions of theorem 1 the propagator W(1) defined in 
equation (26) has the following convergent series expansion: 

m 

W ( t )  = X2"Wn(1) 
l L = O  

where, for all 1, we define 
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The corresponding expansions for V(t) and * ( t )  ( t  2 0) are 

where, for any z, z+ means 2- if z 2 0 and 0 if z < 0, whilst z- means z if 
z < 0 and 0 if z > 0 (so that zn = z+" + z-" ). It should be noted that, despite 
appearances, the expansions such as (41) are not power series expansions of the usual 
type, since the coefficients of X2" are themselves functions of A. 

proof. We consider formula (41) first. Let X satisfy the condition (23) as in theorem 
1 and let the contour in~equation (34) be a circle of radius ;a centred at the origin. 
The definition (17) of 4 and the condition (23) imply that l&z)1 < 2 I i / a  on the 
contour; consequently we have 

The third equality follows from the fact that the series inside the second integral is 
dominated by the series 

which converges due to (23). Thus, using Cauchy's formula for a derivative, we may 
write W(1) in the form (41), convergent for X z  < a2 /41C,  where by (17) 

W,,(t) = 1 (all 1 )  

Now we consider the series for V ( t ) ,  equation (43). The multiple integral in the nth 
term in the series for V ( t ) ,  call it V,,(t), is bounded above, when 1 > 0, by 
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Hence the series (43) for V ( 1 )  is majorized by the series for exp ( I X I z l  J"," ds [+(s)[) ,  
and therefore converges by virtue of the bound (22) on +(t ) ,  uniformly on any 
compact interval of the positive t-axis. Then it may be checked, using term-by-term 
differentiation, that the series for V ( t )  satisfies the master equation (14) and its 
boundary condition V(0)  = 1. 

Finally, to prove the series (44) for W(1)  we substitute (41) and (43) into (25). 
0 

The expansions in equations (41)-(44) are exactly the same as ones used by the 

This completes the proof of theorem 2. 

Brussels group [2,9]. 

5. Non-exponential time evolution 

In this section, we consider the case where the asymptotic time evolution decays 
more slowly than any exponential function. The following theorem gives a sufficient 
condition for such a decay situation. 

Theorem 3. 
decays to zero more slowly than any exponential, so that 

Let + be a locally integrable complex-valued function on [0, M) which 

lim +( t )  = 0 (48) 
1-m 

whilst for any positive a, however small, we have 

*(t)e" unbounded as t -, 00. (49) 

Then the solution V ( t )  of the one-dimensional version of equation (14), provided 
that its fourth derivative exists and is of bounded variation, is not bounded on the 
positive t-axis by any decreasing exponential. This result holds even if PLP is 
non-zero. 

Proof. Suppose, to the contrary, that V ( t )  were bounded in absolute value by some 
decreasing exponential of the form Cexp(-yt)  with y > 0 and C a positive con- 
stant. Then its Laplace transform V(  p) would be analytic in the open half-plane 
Re p > -y and hence, by (19), the function & p )  would be meromorphic for 
Re p > -7. Consequently, by deforming the contour in the inverse transform for- 
mula giving + ( 1 )  in terms of & 1 ) ,  we would have 

x {sum of residues at poles of integrand in Re z > -rl} (50) 
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where y1 is a positive number less than y. This last step is justified by the lemma 
referred to in the proof of theorem 1, this time applied with p(1 )  = V""(1) so that 
after five partial integrations and use of the facts (deducible from equations (13) and 
(2) restricted to 71,) that V(0) = 1 and V'(0)  = P L P  the lemma gives 

(51) 
P L P  V"(0) ."I( 0) 

( z + i y )  + ( z + i y ) 2  + ( z + i y ) 3 + 0 ( & )  
(z  + iy )V(z  + iy) = 1 + 
uniformly in -yl < I < cu. From this version of the lemma it follows that the 
integrand in (SO) is uniformly small for large iy l  so that the change in the path of 
integration at infinity is justified, and also that l / V ( z + i y )  - ( z + i y ) - P L P + o ( l )  
for large IyI so that the poles mentioned in (50) are confined to some finite part of 
the strip -yl < Re z < 0 and are therefore finite in number. 

By an argument similar to the one starting with equation (36) in the proof of 
theorem 1, using the estimate (51), the first term o n  the right of (SO) decays as 
f - m faster than any exponential e-71' with 0 < y2 < yl, and the second is a sum 
of terms of the form ep*t   polynomial in 1 ) .  where pi is the position of the relevant 
pole. But such a form for + ( t )  is incompatible with at least one of the conditions 
(48), (49); so our original supposition must be false, and the theorem is proved. 0 

As a corollary, theorem 3 implies that if 1+(1)1 falls off more slowly than expo- 
nentially and V ( t )  is smooth enough then the sum of the convergent power series 
(43) for V ( 1 )  does not decay exponentially with increasing 1. In this case there is no 
guarantee that the integrals defining the series expansions (42) and (44) for W(1)  
and W ( t )  exist, and even if they do there is no guarantee that thc expansions will 
converge. 

6. The case where 3L, is n-dimensional 

In the foregoing work we made the assumption that the subspace 71, picked out by 
the projection operator P was one-dimensional. Here we extend the analysis to deal 
with the case where this subspace is ndimensional (n being finite) and at the same 
time drop the restriction P L P  = 0 (equation (21)). 

As before, the starting point is equation (14), but now F(1) and + ( 1 )  in equations 
(16) and (9) are operators in 71,. They can he represented (relative to some arbitrary 
basis in 71,) as n x n matrices. Then V(1) = P U ( f ) P  in equation (13) is also 
represented by an n x n matrix, and equation (14) can be interpreted as a matrix 
equation subject to the boundary condition V(0)  = I,, where I, is the unit n x 71 

matrix. Piking the Laplace transform of the matrix version of equation (14) we have, 
using (11) 

G y p )  = {PI" - P L P -  X%,L(p)}-' (52) 

and so the solution to the master equation (14) is now 

with c sufiiciently large. 
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We use the standard Hilbert-space operator norm in 'If,, which is given by 

l l + l l z  = (largest eigenvalue of +++) 

n-'tr($+$) < 11$112 < tr(++$).  

(54) 
so that 

(55) 

Theorem 4. Let $ ( t )  be a function of t E [ O , o o )  whose values are operators in 'HI 
satisfying 

Il+(t)ll < K e x p ( - a t )  all 1 > 0 (56) 

where IC and a are positive constants, and let X be a real number satisfying 

Define p , , p , ,  ... to be the solutions of 

det{zI, - P L P -  X24(z))  = 0 (58) 

that lie in the half-plane Rez  2 -+a, and suppose that the n eigenvalues of the 
matrix P L P  + X z 4 ( z )  are distinct for all z in some neighbourhood of the point set 

(i) the number of points in the set { p , , p , ,  ...} (allowing for multiplicities) is 71. 

(ii) The matrix version of equation (14) has a solution in the form 

{ P , , P Z > . . . } .  Then 

~ ( t )  = ~ ( t )  + W ( t )  all t > 0 (59) 

with 

l l f i ( t ) l l  < K l e x p ( - + a t )  all t > o (60) 

where K, is a positive constant and, if the points p , ,  . . . , p ,  are distinct, 

where lui) is a non-zero n x 1 column vector satisfying the equation 

{ p i l n  - P L P  - X 2 4 ( P i ) ) l U i )  = 0 

( l i i l { P i l n  - P L P  - X * 4 ( P i ) }  = 0 

(62) 

iUii is a iioii-iiio 1 i~~ vectoi 3pisf.,.;ng 

(63) 

and ci is the number defined by 

(iii) The real parts of the numbers { p l , .  . . ,pn)  are non-positive. If the Hermitian 
part of the operator 4( 2) is invertible for all purely imaginary values of z then the 
real parts of { p , ,  . . . , p n }  are negative. 
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proof. (i) We apply Rouche's theorem to the function 

f ( z )  = det{zIn - P L P  - X z ~ ( z ) )  

= det{zl,, - PLP)de t{ I ,  - (21, - P L P ) - ' X 2 G ( z ) )  (65) 

taken round the semicircular contour defined in the proof of theorem 1. Since PLP 
has only a finite number of eigenvalues, all of them purely imaginaly, we can make 
the semicircle big enough to ensure that the distance from a point on the contour to 
an eigenvalue of P L P  is always at least $CY, and hence that 

ll(z1, - PLP)-'II < ( + - I  

I I l l ( z ) I I  < 2 1 i / o  (67) 

(66) 

for all r on the contour. We also have, as in the proof of theorem 1, 
. .~ 

and hence, by (66), (57) and (67) 

l l (z1, - P L P ) - ' X ~ & ( Z ) [ I  < sin-'(r/Zn). (68) 

It follows that each one of the eigenvalues of {Im - (21, - PLP)- 'X2&z))  lies 
within a circle in the complex plane having centre 1 and radius sin-'(rr/Zn), so 
that the eigenvalue cannot vanish and its argument is between - r / 2 n  and r / 2 n  ; 
consequently det{l, - ( r l ,  - PLP)-'X*&)) also cannot vanish and its argument 
is between - r / Z  and r / Z .  z goes all the way around the contour the total change 
in argdet{l, - (21, - PLP)- 'X2&z)}  must therefore be zero and so, by (65), 
f ( r )  and det{z1, - P L P )  have the same number of zeros inside the contour. The 
zeros of det{zIn - P L P ) ,  being the eigenvalues of P L P ,  all lie inside the contour 
and are n in number; so f( z )  has n zeros inside the contour and by definition these 
are the numbers p , ,  . . . , p , .  

(ii) Deforming the contour in equation (53), we have 

V(1)  = - eztdz{zI,, - P L P -  X 2 ~ ( z ) ) - '  + W(1)  
2 m  J-eJziim -u/z-im 

where the matrix function W ( t ) ,  which provides the asymptotic form of V ( t ) ,  is 
given (since we are assuming p,, ..., p ,  to be distinct) by 

The proof of formula (61), which follows from (70), is given in appendix 2. The 
proof of formula (60) is closely analogous to that of the corresponding formula (27) 

(iii) By the definition (58) of p,, there is a non-zero vector 'p in 31, with the 
i!! theerem 1; *ere i$ "" "ped !a . e p t  the &!.l!S. 

property 

( ' p , { P i 1 ,  - PLP - X24(P;)lip) = 0 .  (71) 
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W i n g  the real part we find, since P L P  is anti-Hermitian, that 

P V Coveney and 0 Penrose 

( v , v ) R e p i  - X2Re(vp ,&pi )v )  = 0 (72) 
By the result in appendix 1, the expression { ( v , ~ )  R e p  - Xz R e ( v p , 4 ( p ) p ) )  is 
certainly positive if Re p is positive, and so Re pi cannot be positive. If in addition 
the Hermitian part of & p )  is non-singular for all purely imaginary p then, since 
a non-singular non-positive definite matrix must be negative definite, the Hermitian 
part of G ( p )  is negative definite for purely imaginary p. Consequently in this case 
the expression 

(v,v)  R e p  - X 2 R e ( v 3 & ( p ) v )  
must be positive even when Re p = 0 and so, by (72), Re p i  cannot even be zero. 

0 

Even if the eigenvalues of P L P  + X 2 ~ ( r )  are not distinct, equation (61) still 
holds provided that the matrices piI, - P L P  - X 2 4 ( p i )  ( i  = 1,. . . , n )  all have 
rank n - 1. Some other cases are discussed briefly in appendix 2. 

As in theorem 1 these results show that the asymptotic behaviour of V( 1 )  at large 
times is dominated by W(1) and is therefore a sum of decaying exponentials and 

Equation (61), in a slightly different form, was first given by Grecos el a1 1121. 
Theorem 3 likewise generalizes to the case where 31, is n-dimensional: if 11$(1)11 

decays to zero more slowly than any decreasing exponential, then IlV(t)ll is not 
bounded on the positive real axis by any decreasing exponential. Thc proof is a dircct 
analogue of the one given in section 5 for the n = 1 case. 

This completes the proof of theorem 4. 

rlomnnrl - . - : l l ~ A n m ~  00 &mn hrr  / A I \  
UYL..y-.. Y..~L..".IV.LY - E'..,.. Y ,  ,U*). 

7. Asymptotic evolution equations 

In the Brussels formalism, W ( t )  is an important operator; as noted earlier, authors 
from this group write it as PC(1)P since it is the projection into 71, of an operator 
C ( 1 )  which when applied to the initial phase-space density po is supposed to give the 
Ju-Lullc" h l l l ~ i l l L  \,u,,g- ,,U, c aaJ,"p,"L,C, p,, "L U,., CV...p "L' p Y . %  y"" Y C . . O . L ,  V l '  

The operator C is then used to construct the kinetic cquation governing the approach 
to equilibrium [2]. 

Tb compare our results with those of the Brussels group, we can derive an evo- 
lution equation for W(1) by differentiating equation (61) with respect to 1, using 
equations (62), (17) and finally (61) again. This procedure gives, assuming for sim- 

I- rollnrl 'L:--dJ I 1 n - n  +:-a oes,--+n+:n\ nqrt n G  thn mmnlp+n nhorn m n r o  r l o m c ~ ? ~ ,  n 

nliritv that P L P  0 (eniiirinn , - ~ ~  (71)) ,--,, r----J 

n 

m = X 2 1  + ( s ) W ( t - s ) d s .  (73) 



On the validiry of the Brussels formaliqm in statisfical mechanics 4961 

This result should be compared with the master equation (14) for the full evolution 
operator V(t ) .  Equation (73) coincides exactly with equation (74) of [9]. which was 
obtained by the methods of the Brussels group. 

Another operator from the Brussels formalism whose existence we may establish 
from the foregoing discussion is the so-called 'kinetic operator' [2,9]. This operator, 
which the Brussels group denote hy P r P ,  is defined by the requirement that it satisfy 
(in the case P L P  = 0) 

m 

P r P  = X2 i d.sy5(s)e-aPrP. (74) 

From this definition it follows by differentiation that 

(0)  = X 2 i  dsy5(s)e('-S)PrPW(0). (75) 
d - [ e f P r P W ( ~ ) ]  = prpefPrPw d t  

amparkon  k t h  equation (73) shows that both W(t )  and ecprpW(0) satisfy the 
same evolution equation and are the Same at t = 0. Hence 

m 

~~~ 

w(t) = e'prPW(0).  (76) 

From this it follows that 

If po is chosen to lie in 'NI then W ( t ) p , ,  which according to (13) and (29) is the 
asymptotic form of P p (  t ) ,  will satisfy the equation 

(78) 
d 
d t  

which is the autonomous kinetic equation sought by the Brussels school, restricted to 
the subspace HI. 

It can be verified, using first equation (62) (with P L P  = 0) and then (17), that 
a matrix satisfying equation (74) is 

- ~ ( t ) ~ ,  = P r P w ( t ) p o  

where ($1 denotes the element associated to lui) (as defined in (62)) in the corre- 
sponding dual basis, the set of row vectors satisfying 

(.;I..) I = 6 . .  :I ' (80) 

Such a dual basis always exists, and is unique, provided the column vectors Iui) are 
linearly independent. A sutficient condition for these vectors to be linearly indepcn- 
dent at small X (remembering that P L P  = 0 here), is that the matrix &O) depend 
continuously on X and have distinct eigenvalues when X = 0; for then equation (62) 
with PLP = 0 shows that in the limit X -+ 0 the vectors Iui) approach the eigen- 
vectors of & O ) ,  and the latter are linearly independent if the eigenvalues of q(0) 
are distinct [13]. The linear independence of the vectors Iu i )  when X is sutficiently 
small then follow by continuity. 

Equation (79) was first given in [12]. 
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8. Discussion 

In this paper, we have made a mathematically rigorous study of some aspects of the 
long-time evolution governed by Liouville's equation. Our results establish that, if the 
norm Of the collision operator $ ( t )  in the master equation is bounded above by a 
decreasing exponential, and if the dimension of the P = 1 subspace is finite, then the 
Brussels formalism does indeed pick out the most slowly varying part W ( 1 )  of the 
complete solution; moreover, the series expansion for this component converges for 
sufficiently small values of the perturbation parameter A. However, if these conditions 
on $ ( t )  are not met, the Brussels method is unlikely to work. 

Some members of the Brussels group have attached much significance to exponen- 
tial time decay in their writings, particularly in the context of the decays of unstable 
particles in quantum mechanics [14], although more recently it has been stated 141 
LLld l  n l z L g - L ~ u L =  mu> (ILuLI-CqJu""1LL"' uc'cdy, 12111 "C UVLalllC" LlVLl, LIIC IullllalwIII. 

Our work shows that exponential decay both of the collision operator and also in 
the approach to equilibrium are indeed characteristic features of situations where 
the Brussels formalism works but not necessarily of the behaviour of real physical 
systems. If it is indeed, as stated by Petrosky and Hasegawa [4], that long-time tails 
can be obtained from the Brussels formalism, a minimum requirement appears to to 

Although we have followed the standard convention of the Brussels group in 
taking pt to be the phase space density (or density matrix), there is a lot to be said 
for taking it instead to be the difference between the total phase-space density and the 
equilibrium phase-space density. In that case 31 would denote not the entire Hilbert 
space spanned by the square-integrable phase-space densities, but the subspace of 
that Hilbert space consisting of square-integrable functions that are orthogonal to 
the equilibrium phase-space density or densities. The resulting theorems hold just 
as before, and the prospects for satisfying the conditions for the theory to apply are 
considerably brighter. 

It would be desirable to try to find model systems which would satisfy the require- 
ment on II$(t)ll of exponential decrease. From the definition of +(t),  it is clear that 
this property is related to the ergodic properties of Q L Q .  One may anticipate that 
mixing will be a minimum requirement; in fact, it has previously been conjectured 
(but not proved) that the dynamical system should be an Anosov flow [U]. 

For systems of particles with attractive interactions, it seems unlikely that the 
Anosov property will hold. Indeed, by the KAM theorem, we know that for weak 
attractive interactions the invariant subspaces of the Liouville operator depend in a 
very complicated and non-analytic way on the strength of the interaction. In such 
cases, it seems very unlikely that one can describe the long-time behaviour by means 
of an expansion in powers of a perturbation parameter and if so then the Brussels 
method would not be applicable. 

P V Coveney and 0 Penrose 

.Le. Î .." .:..... .":," I...... .̂...̂ .. n..L:.., A"......, _.. L^ -L.-:--A c--- .L̂  I ---- I.^... 

he th.l! El  hp i2!kite=di!??..sinne!. 
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Appendix 1. Proof that the Hermitian part of G(z) is non-positive definite when Re z 
is non-negative. 

we prove that, regardless of the dimension of 31, providing only that is is infinite, 
the Hermitian part of $( z )  is non-positive definite for any complex z with positive 
real part, and that it is also non-positive definite when z is purely imaginary if 
II$(t)ll satisfies the upper bound condition (56). This is equivalent to showing that 
Re('p,G(z)'p) < 0 for all 'p E El and all z with Re z 2 0. Using the definition 
(17) of the Laplace transform, the definition of + ( t )  (equations (16) and (9)), and 
the fact that L is anti-Hermitian, this matrix element can be written 

where E(q) is the spectral resolution of the identity for the (Hermitian) operator 
-iQLQ (so that the eigenvalues of Q L Q  are iq with 1) real), and z,y are, respec- 
tivly, the real and imaginary parts of z. Thus we have 

For x > 0 the right-hand side is non-negative because d E ( q )  is a projection; there- 
fore Re('p,$(z)'p) is non-positive. If Il$(t)ll satisfies the upper bound condition 
(56), then ('p,&z)p), being analytic in z for z > -;a is continuous at z = 0 and 
therefore Re('p,$(z)'p) is non-positive for z = 0. QED. 

In the limit z - iy, the right-hand side of (82) becomes, formally 

Hence Re('p,$(iy)ip) is negative unless ( d / d q ) [ ( Q L , P p ,  E (v )QL,Pv) ] ,= ,  = 
0. In particular, if the spectrum of QLQ is continuous near 9 = y, then there will 
in general be some for which Re(rp,$(iy)'p) < 0. 

Appendix 2. Pmof of equation (61). 

Define 

C(z) = P L P +  X 2 $ ( z ) .  (84) 

The definition (58) of pi is equivalent to the statement that p i  is an eigenvalue of 
C ( p i ) .  In accordance with our hypothesis that the eigenvalues of C ( z )  are distinct, 
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there is a non-singular matrix M (  z ) ,  whose columns are the right eigenvectors of 
G( z ) ,  such that the matrix D(  z )  defined by 

P V Coveney and 0 Penrose 

D ( r )  = M ( r ) - ' G ( z ) M ( z )  (85) 

is diagonal and has all its diagonal elements different. Hence there is for each p i  a 
nonsingular matrix M ( p i )  such that 

D(Pi)  = M(Pi ) - 'G(P i )M(Pi )  (86) 

L P i  - D(Pi)  = M(Pi) - l [ InPi  - G ( P i ) l M ( P i )  

is also diagonal, and hence the diagonal matrix 

(87) 

has precisely one zero element on the diagonal. Let this be the kth diagonal element; 
denote by lek)  the column matrix with a 1 in the kth diagonal position and zeros 
everywhere else, and by (ekl the analogous row matrix. 

?b calculate the residues in equation (70), we need the inverse of the matrix 

1,. - D ( z )  = I , P ~  - D ( P ~ )  + ( z  - p i ) ( I n  - D ' ( P ; ) )  + o((2 - p i ) ' ) .  (88) 

Gii :Le d i a g ~ ~ ~ ! ,  all ekiiiiiit~ 0: txis iiiiitiii Bie D(1) is i - pi m e p t  ihe kth, 
which is ( ~ - p ~ ) ( e ~ l [ I ~ - D ' ( p ~ ) ] l e ~ ) + O ( ( z - p ; ) ~ ) .  Off the diagonal all elements 
are at most O ( z  - p i ) .  Calculating the inverse matrix by means of cofactors, we find 
that 

provided that the denominator, which is the (k,k) element of (I,, - D ' ( p i ) ) ,  is 
non-zero. This denominator can be written, using (SS), as 
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'lb find the residue required for the evaluation of (70) we multiply (89) on the left 
by M ( p ; )  and on the right by M ( p i ) - I ,  and then use (90) and (87), obtaining 

Since M ( p i ) l e k ) ,  the kth column of the matrix M ( p i ) ,  is proportional to the column 
matrix 1.;) defined in (62) and ( e k l M ( p ; ) - '  is proportional to (uil defined in (63), 
the result (61) follows. 0 

The above calculation works in some cases where G( z )  does not have distinct 
eigenvalues, provided the numbers p i  are all distinct and each p i  is a non-degenerate 
eigewaioe of iiie wrrespondiny G( p i  j, so that aii ihe diagonai mairices i , , p , - D ( p ;  j 
have but a single  zero^ on the diagonal-i.e. they are of rank n - 1. The method 
can be generalized to the case where some or all of these matrices have rank less 
than n - 1, provided they can still be diagonalized; in this case the formula for the 
residue involves the inverse of the diagonal submatrix of I, - D ' ( p i )  whose diagonal 
elements are in the Same places as the zero diagonal elements of I , p i  - D ( p i ) ,  but 
the formula is not worth giving here. 
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